Effects of Articular Cartilage Constituents on Phosphotungstic Acid Enhanced Micro-Computed Tomography
نویسندگان
چکیده
Contrast-enhanced micro-computed tomography (CEμCT) with phosphotungstic acid (PTA) has shown potential for detecting collagen distribution of articular cartilage. However, the selectivity of the PTA staining to articular cartilage constituents remains to be elucidated. The aim of this study was to investigate the dependence of PTA for the collagen content in bovine articular cartilage. Adjacent bovine articular cartilage samples were treated with chondroitinase ABC and collagenase to degrade the proteoglycan and the collagen constituents in articular cartilage, respectively. Enzymatically degraded samples were compared to the untreated samples using CEμCT and reference methods, such as Fourier-transform infrared imaging. Decrease in the X-ray attenuation of PTA in articular cartilage and collagen content was observed in cartilage depth of 0-13% and deeper in tissue after collagen degradation. Increase in the X-ray attenuation of PTA was observed in the cartilage depth of 13-39% after proteoglycan degradation. The X-ray attenuation of PTA-labelled articular cartilage in CEμCT is associated mainly with collagen content but the proteoglycans have a minor effect on the X-ray attenuation of the PTA-labelled articular cartilage. In conclusion, the PTA labeling provides a feasible CEμCT method for 3D characterization of articular cartilage.
منابع مشابه
Micro-Scale Distribution of CA4+ in Ex vivo Human Articular Cartilage Detected with Contrast-Enhanced Micro-Computed Tomography Imaging
Citation: Karhula SS, Finnilä MA, Freedman JD, Kauppinen S, Valkealahti M, Lehenkari P, Pritzker KPH, Nieminen HJ, Snyder BD, Grinstaff MW and Saarakkala S (2017) Micro-Scale Distribution of CA4+ in Ex vivo Human Articular Cartilage Detected with Contrast-Enhanced Micro-Computed Tomography Imaging. Front. Phys. 5:38. doi: 10.3389/fphy.2017.00038 Micro-Scale Distribution of CA4+ in Ex vivo Human...
متن کاملRapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics
OBJECTIVE Mouse articular cartilage (AC) is mostly assessed by histopathology and its mechanics is poorly characterised. In this study: (1) we developed non-destructive imaging for quantitative assessment of AC morphology and (2) evaluated the mechanical implications of AC structural changes. METHODS Knee joints obtained from naïve mice and from mice with osteoarthritis (OA) induced by destab...
متن کاملDepth-Dependent Glycosaminoglycan Concentration in Articular Cartilage by Quantitative Contrast-Enhanced Micro–Computed Tomography
OBJECTIVE A quantitative contrast-enhanced micro-computed tomography (qCECT) method was developed to investigate the depth dependency and heterogeneity of the glycosaminoglycan (GAG) concentration of ex vivo cartilage equilibrated with an anionic radiographic contrast agent, Hexabrix. DESIGN Full-thickness fresh native (n = 19 in 3 subgroups) and trypsin-degraded (n = 6) articular cartilage b...
متن کاملDetermining Collagen Distribution in Articular Cartilage by X-ray Micro-computed Tomography
متن کامل
Triamcinolone acetonide activates an anti-inflammatory and folate receptor–positive macrophage that prevents osteophytosis in vivo
INTRODUCTION Triamcinolone acetonide (TA) is used for osteoarthritis management to reduce pain, and pre-clinical studies have shown that TA limits osteophyte formation. Osteophyte formation is known to be facilitated by synovial macrophage activation. TA injections might influence macrophage activation and subsequently reduce osteophytosis. Although widely applied in clinical care, the mechanis...
متن کامل